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Summary. A type of graphs derived from a cycle and associated with primitive coronoids are referred 
to as "crowns". The characteristic polynomials and matching polynomials of crowns are studied. 
These notions are used to calculate the sextet polynomial for primitive coronoids. Patterns of aromatic 
sextets are treated in some detail. 
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"Crowns" und aromatische Sextette in einfachen coronoiden Kohlenwasserstoffen 

Zusammenfassung. Eine Graphentype, die yon einem Cyclus abgeleitet ist und mit einfachen Coro- 
noiden verknfipft ist, wird als "Crown" bezeichnet. Die charakteristischen Polynome und die ,,mat- 
ching" Polynome der Crowns werden untersucht. In diesem Rahmen werden die Sextett-Polynome 
ffir einfache Coronoide berechnet. Die Muster der aromatischen Sextette werden im Detail behandelt. 

Introduction 

A coronoid [1-3]  is a geometrically planar system consisting of  congruent regular 
hexagons like a benzenoid, but  having a hole of  a size equal to at least two hexagons. 
The class of  primitive coronoids [1] has been studied in particular [3-10].  These 
systems consist of  a single chain of  hexagons in a circular arrangement. They have 
chemical counterparts  in the interesting class of  conjugated polycyclic hydrocarbons 
called cycloarenes [11-15].  

In the present work we define "crowns"  as graphs associated with primitive 
coronoids. The characteristic polynomials and matching polynomials of  crowns 
are studied. The latter class of  polynomials appears to be related to the sextet 
polynomials o f  primitive coronoids. 

Results and Discussion 

Characteristic Polynomial 
The characteristic polynomial  is a fundamental  concept in graph theory found in 
current textbooks on this topic. It has found important  chemical applications [16-  
19]. The characteristic polynomial  of  a graph G with n vertices is defined by 

¢P(Glx) = I x I - A ( G ) [  = ( - 1 ) n l A ( G ) -  x I I  

where A (G) is the adjacency matrix of  G, and I is the identity matrix. 
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The graph spectral theory is closely related to the familiar Hfickel theory of  
conjugated hydrocarbons,  which is treated in many  textbooks of organic and phys- 
ical chemistry. The Hfickel determinant  is actually 

I A (G) + x I I = ( -  a)n ~p (G )  L - x)  (2) 

Cycle 
Let a cycle with n vertices (and n edges) be identified by the symbol C,. The 
coefficients of  its characteristic polynominal ,  viz. 

H 

q0 (C, I x) = x ~ F, a~ x " -  z (3) 
i = 1  

are known.  They are given by [-18]. t0; ) oddan i . 
- 2 ;  i o d d a n d  i = n 

az 
n p p  1 ;i= 2pandi <n = ( - 1 ) p  - - 1 

2 [(-- 1) p -  1]; i=2pandi=n 

In a more  compressed form this polynomial  reads [20] 

~p(C, Ix)=xn--2+ J=~E (-ly n-j-j_ 1 1 x,_Zj 

Explicit formulas for q~ (Cn Ix) exist in different pictures, e.g. 

(4) 

(5) 

= + - 2 (6) 
2 2 

which has an accompanying recurrence relation: 

q0 (C~ + 3 [ x) = (x + 1) [q0 (Cn + 21 x) - q0 (C, + 11 x)] + q0 (C, I x) (7) 

Table 1 shows the characteristic polynomials  for cycles with n ~< 8. Degenerate 
cycles with n -- 0, 1 and 2 are included. The appropriate  polynomials  for these 
systems are defined according to eqn. (6). 

Crowl~l 

A crown, denoted by Cn, g, is obtained f rom the cycle Cn in the following way: 
(1) to each vertex Xi of  C~ a set Vi of  k new vertices is added;  
(2) X~ is joined by an edge to each of  the k vertices of  Vi (i = 1, 2, . . . ,  n). 

This definition is illustrated by the example of  C6, 2; see Fig. 1. 
When  we define C~, 0 --- C~ the cycle becomes a special case of  crowns. 
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Fig.  1. The  c r o w n  C6, 2 

1 A 
3 ""2 
Fig .  2. Th e  c r o w n  C3, ~ w i t h  n u m b e r e d  ver t ices  
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T a b l e  1. C h a r a c t e r i s t i c  p o l y n o m i a l s  for  s o m e  cycles  

n ~ (C.lx) 

0 0 

1 x - 2  

2 x 2 - 4 

3 x 3 - 3 x -  2 

4 x 4 - 4 X 2 

5 x s - 5 x  3 + 5 x  - 2 

6 x 6 - 6 x 4 + 9 x 2 - 4 

7 x 7 - 7 x  5 + 1 4 x  3 - 7 x  - 2 

8 x 8 - 8 x  6 + 2 0 x  4 -  1 6 x  2 

9 x 9 -  9 x  7 + 2 7 x  5 -  3 0 x  3 + 9 x -  2 

10 x I ° -  l O x  8 + 3 5 x  6 - 5 0 x  4 + 2 5 x  2 - 4  

By means of  a useful theorem [18] we find the characteristic polynomial of  a 
crown Cn, k as 

k 
~ (C  Ix) = xnkq~ C r x - -  

A generalization of  the recurrence relation (7) reads 

g~ (en+ 3,k [ x) = ( x  -t- l - Q) [xk cp (C,,+ l,k ] x) - x2k cp (Cn+ ,,/~ [ x)] 

+ x 3k cp (C.,k [ x) (9) 
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Table 2. Characteristic polynomials for some crowns 

Z. Fuji et al. 

n q~ (C., kl x ) 

0 0 
1 x k - l ( x  2 _  2 x -  k) 
2 x2(k - I ) [ ' X  4 __  2 (k + 2)x 2 + k 2] 
3 X3(k-1)[x6--3(k+ 1)x4-2x3+3k(k+ 1 ) x 2 -  k 3] 
4 x4(k-1)[xS-4(k+l)x6+2k(3k+4)x4-4k2(k+ 1)x2+k 4] 
5 xS(k- l )[xl°-5(k+l)xS+5(2kz+3k-1)x6-2xS-5k(2kZ+3k-1)x4+5k3(k+l)xZ-kS] 
6 x6(k-1)[x12-6(k+lxl°+3(k+l)(5k+3)xS-2(lOk3+lSk2+9k+2)x6+3k2 

(k + 1)(5k + 3)x 4 -  6k4(k + 1)x 2 + k 6] 

For  the sake of exemplification we apply eqn. (8) to the crown C3,l, which is 
depicted in Fig. 2. By means of  Table 1 it is readily obtained 

q)(C3,1 I x )  = x 3 x -  - 3  x -  - 2  =X6--6X4--2X3+6X2--1 (10) 

The same result was obtained by a direct expansion of the determinant  (1). With 
the number ing  of vertices as chosen in Fig. 2 it reads 

- x  0 0 1 0 0 
0 - x  0 0 1 0 
0 0 - x  0 0 1 

q~(C3,1lx)= 1 0 0 - x  1 1 

0 1 0 1 - x  1 
0 0 1 1 1 - x  

In Table 2 the characteristic polynomials  for some crowns are collected. 

(11) 

Matching Polynomial 

The matching polynomial  [-21-25] has been invented in the chemical context several 
times and under  different names;  see Godsil  and G u t m a n  1-24] for a historical 
survey. The matching polynomial  for a graph G is defined by 

m 
~ ( G l x )  = ~2 ( -  1)Jp(G, j )x  N-z j  (12) 

j = 0  

where p (G, j) is the number  of distinct selections o f j  independent  edges in G. Some 
authors define the matching polynomial  as 

m 
~ ( G I x )  = Z p ( G , j ) x  N-2j (13) 

j = 0  

It is clear that  if we know a (G [ x) we can easily obtain ~ (G I x). 
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Fig. 3. A primitive coronoid (left) and its dualist (right) 

1 6 

Fig. 4. The generalized crown associated with the primitive coronoid of Fig. 3 
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For a crown, including the cycle as its special case, the matching polynomial 
is determined by 

~(C~,k'X)=q~(Cn,kl x) + 2X~k = x~klq0(Cnlx-  k )  + 21 (14) 

since Cn,k has only one cycle. 
The importance of matching polynomials for crowns lies in the fact that they 

give a clue to the computation of sextet polynomials for primitive coronoids. In 
the next paragraph we establish the link between a primitive coronoid and a 
generalization of crowns. 

Generalized Crown 

Assume a primitive coronoid as exemplified in Fig. 3. The chosen example may 
be designated in terms of the lengths of segments [-3, 9] as/5,2,6,3,4,4/or/5,2,6,3,42/. 
The six angularly annelated hexagons (A) are numbered. 

A generalized crown associated with the primitive coronoid in question is con- 
structed in the following way (cf. Fig. 4). A cycle C6 corresponds to the six A 
hexagons. For the sake of clarity its edges are numbered in consistence with the 
At (i = 1, 2, ..., 6) of Fig. 3. Assume that the segment A i - A j  holds l linearly 
annelated hexagons (where l may be zero). Add l vertices and connect each with 
the vertex being common to the edges i and j of the cycle. 

This is a generalization of crowns which are defined above. The special case 
emerges when all I are equal. These graphs (crowns) are associated with primitive 
coronoids of equidistant segments. Here we shall refer to such primitive coronoids 
as regular. 
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A generalized crown is analogous to the graphs [26] associated with single 
unbranched chains of hexagons and called caterpillars [27-29] or Gutman trees 
[29, 30]. 

Sextet Polynomial 

Consider a Kekul6an benzenoid or coronoid system with the corresponding graph 
G. The sextet polynomial [32] is defined via the number of (resonant) sextets, say 
j, in a Kekul6 structure of G, represented by a generalized Clar formula. Let r (G,j) 
be the number of distinct generalized Clar formulas with j sextets, where j = 1, 2, 
. . . ,  s. Only proper sextets are counted and indicated by inscribed circles: 

©@© 
improper sextet proper sextet 

An example of a Kekul~ structure and the corresponding generalized Clar formula 
is shown in Fig. 5. Now the sextet polynomial of G is defined by 

s 

o(GIx)  = Y. r(G,j)x ~ (15) 
j = 0  

The total number of Kekul6 structures of G is obviously 

s 

K(G) = Y~ r(G,j)  = cr(G[ 1) (16) 
j=0  

Fig. 5. A Kekul6 structure for the primitive coronoid of Fig. 3 (left) and the corresponding generalized 
Clar formula (fight) 

2 

Fig. 6. The smallest coronoid, viz./22,3/2 (left) and the generalized crown associated with it (right) 
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For general treatments of Kekul6 structures the reader is again referred to current 
textbooks in chemistry. Especially for their enumerations (computations of K), see 
a recent monograph [31]. 

Aromatic Sextets in Primitive Coronoids : 
General Treatment and the Smallest Coronoid 

Gutman trees or caterpillars [26-30] are useful in calculations of sextet polynomials 
of  unbranched catacondensed benzenoids (single chains of  hexagons) [33]. In an 
analogous way there is a close connection between the sextet polynomial of a 
primitive coronoid and the matching polynomial of the corresponding generalized 
crown. This polynomial, say ~ (gen. crown lx), in fact contains the coefficients of 
a sextet polynomial which we shall designate by 6 (prim. coronoid I x). Specifically, 
if 

(gen. crown] x) = 

in consistence with eqn. (13), then 

m 

p (gen. crown l J) XN- 2j (17) 
j = 0  

(prim. coronoid[ x) = E p (gen. crown [j) x j 
j=O 

(18) 

Here ~ symbolizes the "uncorrected" sextet polynomial. We shall in the following 
explain the necessary corrections which lead from 6 to or. 

As a first example consider the smallest coronoid (with eight hexagons), which 
is shown in Fig. 6 along with its generalized crown. Using the indicated numbering, 
the characteristic polynomial of  the generalized crown, say c, was obtained by direct 
expansion of  the appropriate determinant with the result 

- x  0 1 0 0 0 0 
0 - x  0 1 0 0 0 
1 0 - x  0 1 0 1 
0 1 0 - x  0 1 0 
0 0 1 0 - x  1 0 
0 0 0 1 1 - x  0 
0 0 1 0 0 0 - x  
0 0 0 1 0 0 1 

= ( X  2 - -  1 )  4 - -  4x2(x 2 - 1) 2 + 4xZ(x 2 - 1) 
= x  8 - 8 x  6+  18x 4 -  12x 2 +  1 

0 
0 
0 
1 
0 
0 
1 

- -X 

(19) 

m ( c l x )  = 

= , ~ super-sextet 

~ ~ , ~ enlarged sextet 

Fig. 7. TheKekul6 structures ofthe smallest coronoid corresponding to the super-sextet and enlarged 
sextet 
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= ~ ~ no sextet 

Fig. 8. The four annulenoid Kekul6 structures in kekulene,/3/6, and the corresponding generalized 
Clar formulas 

The matching polynomial according to the definition (12) is 

a ( c l x )  = q0(clx) + 2x  2 = x 8 - 8x  6 + 18x 4 -  10x 2 + 1 (20) 

and in the version of  eqn. (13): 

I~(C[X) : X 8 -1- 8 X  6 -]- 1 8 X  4 + 1 0 X  2 + 1 (21) 

Finally we arrive at the uncorrected sextet polynomial for the smallest coronoid 
(Fig. 6) as: 

~y(/22,3/21x) = 1 + 8x  + 18x 2 + 10x 3 -t- x 4 (22) 

Ohkami et al. [34], during their studies of  sextet polynomials, reported a detailed 
mapping of  the aromatic sextet patterns in the smallest coronoid. In order to 
establish a one-to-one correspondence between the generalized Clar formulas and 
Kekul6 structures they had to add two units to r(/22,3/2,1), viz. the number  of  
formulas with one sextet. These special sextets were referred to as a super-sextet 
and an enlarged sextet (cf. Fig. 7). With the pertinent correction the sextet poly- 
nomial reads 

cr(/22,3/21x) = 1 + 10x + 18x 2 + 10x 3 + X 4 (23) 

The sextet polynomial (23) now obeys the property (16); 

K(/22,3/211) = ~ (/22,3/211) = 40 (24) 

in consistence with the known K number  for the coronoid in question [1]. 
The situation with a super-sextet and an enlarged sextet is quite general for 

primitive coronoids. For  the sake of  clarity, let us show another  example by con- 
sidering/3/6, which corresponds to the cycloarene called kekulene [11]. The com- 
plete set of  sextet patterns for this system are treated in the next paragraph. 
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In an annulenoid Kekul6 structure of  a primitive coronoid the two perimeters 
(boundaries) are conjugated circuits, while all the internal (radial) edges are as- 
sociated with single bonds. There are exactly four annulenoid Kekul6 structures 
in a primitive coronoid, as is illustrated for kekulene in Fig. 8. The corresponding 
sextet patterns are indicated through the generalized Clar formulas which are 
depicted. 

Aromatic Sextets in Regular Primitive Coronoids 

The above t reatment  of  crowns and their matching polynomials enables us to 
calculate straightforwardly the sextet polynomial for regular primitive coronoids. 

As an example, consider the crown associated with kekulene, viz. C6,1. F rom 
Table 2 (with k = 1) we obtain the characteristic polynomial 

(D(Co, llX) = x 12-  12x1° + 48x  8 -  78x6 + 48x 4 -  12x2+ 1 (25) 

Furthermore,  according to eqn. (14): 

(C6, 1 ] x )  ~- q) (C6, 1 ] x )  -it- 2 X 6 (26) 

which leads to 

~(C6,11x) = xl2 + 12x1° + 48x8 + 76x6 + 48x4 + 12x2+  1 (27) 

This gives the uncorrected sextet polynomial for kekulene as 

~y(/3/6[x) = 1 + 12x + 48x 2 + 76x 3 + 48x  4 + 12x 5 + x 6 (28) 

The equation is identical with the result of  Gu tman  and El-Basil [35]. After the 
correction for the super-sextet and the enlarged sextet we attain at 

cr(/3/6lx) --- 1 + 14x + 48x  2 + 76x 3 + 48x 4 + 12x 5 + x 6 (29) 

in consistence with Ohkami et al. [34]. Now the known number  of  Kekul6 structures 
for kekulene [1, 36] is reproduced by 

K(/3/6) = cy (/3/611) = 200 (30) 

In Fig. 9 a complete mapping of  the generalized Clar formulas of  kekulene is given. 
As the next example consider the coronoid /3 / l ° ,  which is shown in Fig. 10 

together with the crown associated with it. In order to compute its sextet polynomial 
we first need the characteristic polynomial of  the crown Cl0, ~ (see Fig. 10). The 
polynomials cp (Cn, 1 Ix) are found for n ~< 6 on inserting k = 1 in the expressions 
of  Table 2. They are entered into Table 3, which then was extended up to n = 10 
by means of  the recurrence relation (9). Following the procedure outlined above 
it was arrived at the corrected sextet polynomial 

~(/3/l°lx) = 1 + 22x  + 160x 2 + 660x 3 + 1 520X 4 + 2004x  5 
+ 1 520x 6 + 660x 7 + 160x 8 + 20x  9 + x I° (31) 

This equation reproduces correctly the K number  of  the coronoid in question [7] 
as  

K(/3/l°) = ~ (/3/1° I 1) = 6 728 (32) 
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L I I  I 

r(/3/6,0)=1 r(/316,1)=14 

I j 

r(13/6 , 2) =48 

w I 

r(1316, 3) =76 

I I 

r ( /3 l  6,4) =48 

[ J 

r(/3l 6,5)=12 r(13l 6,6)=I 

Fig. 9. The sextet patterns of kekulene. The inscribed numbers are multiplicities indicating the number 
of symmetrically equivalent generalized Clar formulas 

As a final example we shall derive a combinatorial  formula for the sextet 
polynomial  of  a class or regular primitive coronoids, o f  which eqn. (29) is a special 
case. Consider the kekulene h o m o l o g s / k  + 2/6. This system is associated with the 
crown C6,k, of  which the characteristic polynomial is found at the bot tom of Table 2. 
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Fig. 10. The primitive coronoid/3/l0 (left) and the c r o w n  Cl0 ' 1 (right), which is associated with the 
coronoid 

Table 3. Characteristic polynomials for some crowns (k = 1) 

r/ (P (Cn, 1 I X) 

0 0 
1 x 2 -  2 x -  1 

2 x 4 -  6 x a +  1 
3 x 6 - 6 x  4 - 2 x  3 + 6 x  a -  1 
4 x 8 - 8 x  6+  14x 4 - 8 x  2 + 1  
5 x l ° - 1 0 x  8 + 3 0 x  6 - 2 x  5 - 3 0 x  4 + 1 0 x  2 - 1  
6 x 12-  12x 1 ° + 4 8 x  8 - 7 8 x  6 + 4 8 x  4 -  12x 2+  1 
7 x 14-  14x 12 + 70x 1 ° -  154x 8 -  2x  7 + 154x 6 -  70x 4 + 14x 2 -  1 
8 x j 6 -  16x 14 + 96x 12- 272x 1° + 382x 8 -  272x 6 + 96x 4 -  16x 2 + 1 
9 x 18 - -  1 8 x  16 + 126x TM - 438x 12 + 810x 1° - 2 x  9 - 8 1 0 x  8 + 4 3 8 x  6 - 126x 4 + 18x 2 - 1 

10 x 2° - 20x TM + 160x 16 -- 660x x4 + 1 520x 12 -- 2006x m + 1 520x 8 -- 660x 6 + 160x 4 -- 20x 2 + 1 

W i t h  the  a id  o f  th is  e x p r e s s i o n  we h a v e  a r r i v e d  a t  t he  f ina l  r e su l t :  

(/k + 2/61 x) = 1 + (6 k + 8) x + (15 k 2 + 24 k + 9) x a 

+ ( 2 0 k  3 + 3 6 k  2 + 1 8 k  + 2 ) x  3 

+ ( 1 5 k  4 + 2 4 k  3 + 9 k 2 ) x  4 + ( 6 k  5 + 6 k 4 ) x  s + k6x 6 (33) 

I t  is n o t e d  t h a t  the  K n u m b e r  o b t a i n e d  as 

K( /k  + 2/6) = ~( /k  + 2/611) 
= k 6 + 6 k  s + 2 1 k  4 + 4 4 k  3 + 6 0 k  2 + 4 8 k  + 20 

= (k 2 + 2 k + 2) 2 (k 2 + 2 k + 5) (34) 

is c o n s i s t e n t  w i t h  the  p r e v i o u s l y  d e t e r m i n e d  c o m b i n a t o r i a l  f o r m u l a  fo r  th is  q u a n t i t y  

[ 4 - 6 ] ;  see a l so  e spec ia l ly  C y v i n  et al. [2] .  
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